

Energy levels and crystal-field parameters of rare-earth ions in LiRP $_4O_{12}$. II. Non-Kramers ions Pr^{3+} , Tm^{3+}

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1992 J. Phys.: Condens. Matter 4 8585 (http://iopscience.iop.org/0953-8984/4/44/019) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.96 The article was downloaded on 11/05/2010 at 00:46

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 4 (1992) 8585-8592. Printed in the UK

Energy levels and crystal-field parameters of rare-earth ions in LiRP₄O₁₂: II. Non-Kramers ions Pr³⁺, Tm³⁺

Z Mazurak

Department of Solid State Physics, Polish Academy of Sciences, ulica Wandy 3, PL-41-800 Zabrze, Poland

Received 7 April 1992, in final form 8 June 1992

Abstract. From the optical absorption and luminescence spectra of the non-Kramers ion Tm^{3+} in LiRP₄O₁₂, Stark energy levels were deduced. The spectra and experimental energy levels for Pr^{3+} in LiRP₄O₁₂ were published in our previous studies. The results of model crystal-field calculations in C_{2v} symmetry for Pr^{3+} in LiRP₄O₁₂ and Tm^{3+} in LiRP₄O₁₂ are compared with experimental data, for the lowest ten [S, L]J states $f^2(f^{12})$ configurations. It is shown that the method used results in computed levels that generally correlate closely with energy levels deduced from experiment. RMS deviations between calculated and experimental levels range from 15 to 24 cm⁻¹.

1. Introduction

The purpose of this work is to compare the results of crystal-field calculations based on an approximate model with published experimental data for LiPrP_4O_{12} [1-3] and reported for LiTmP_4O_{12} .

While the suggested characterization must be considered tentative, the results provide a basis for further experiments to confirm or correct interpretation. The actual site symmetry of La^{3+} or its replacement by another member R^{3+} of the lanthanide series in single-crystal LiRP₄O₁₂ is C₂ [4]. The computational problems with the large matrices required are formidable even with $f^2(f^{12})$ configurations. Use of an approximate higher symmetry, in this case C_{2v}, with the concomitant reduction in the number of parameters is of considerable interest as long as the results can be shown to be useful. Apart from the computational aspect, the number of freely varying parameters in fits to experimental data of the type discussed here must be kept to a minimum consistent with the nature and magnitude data set.

Most of the spectroscopic data for $LiRP_4O_{12}$ were published by us [1-8]. An analysis of the crystal-field splitting of Nd³⁺ and Er³⁺ Kramers ions in a tetraphosphate matrix was presented in our previous paper [9]. We have reported the results of crystal-field calculations in C₂ symmetry for a limited number of states. This is a formally correct and very useful set of calculations. There is also an intrinsic problem that must be addressed. 29 sublevels in $LiNdP_4O_{12}$ and 35 sublevels in $LiErP_4O_{12}$ (out of the total of 182 sublevels in the f³(f¹¹) configuration) were fitted with an RMS deviation of 6.8-7.4 cm⁻¹ using C₂ site symmetry, i.e. 14 crystal-field parameters. The proposed approximation (point group symmetry C_{2x}) requires fitting the data with nine crystal-field parameters. The method of calculation is similar to that described by Morrison and Leavitt [10].

2. Experimental details

The LiTmP₄O₁₂ crystals used in this experiment were grown by a flux method. Optical absorption measurements were made using a Cary model 2315 spectrophotometer. The emission spectra were recorded for a diluted LiLa_{0.99}Tm_{0.01}P₄O₁₂ sample using a Perkin–Elmer MPF-44B spectrofluorometer. The output was stored by an IBM-XT microcomputer. We determined the 53 Stark energy levels of Tm³⁺ in LiTmP₄O₁₂, which are given in table 3 later (column headed Experimental).

The experimental Stark energy levels of Pr^{3+} in the tetraphosphate matrix were presented in our previous work [1].

3. Analysis of experimental data

3.1. Crystal-field parameters for the rare-earth tetraphosphates

The point group symmetry of the rare-earth tetraphosphate is $C_{2/c}$ [2,4]. In our crystal-field analysis, we take a crystal-field Hamiltonian, in the irreducible tensor form

$$H_{\text{CEF}} = \sum_{km} B_{km}^{\dagger} \sum_{i} C_{km}(\hat{r}_{i}) \tag{1}$$

where the B_{km}^{\dagger} are crystal-field parameters ($\dagger = \text{complex conjugate}$) and where C_{km} are spherical tensors, related to ordinary spherical harmonics $Y(\theta_i, \phi_i)$ by

$$C_{km}(\hat{r}_i) = (4\pi/(2k+1))^{1/2} Y_{km}(\theta_i, \phi_i)$$
⁽²⁾

where θ_i and ϕ_i are polar coordinates of the *i*th electron.

Symmetry considerations have a profound effect on the interpretation of the spectra of rare earth ions. We have already mentioned the effect of symmetry on selection rules for electric and magnetic dipole transitions and on the classification of crystal-field split energy levels.

Invariance under the point-group operations requires that the crystal-field Hamiltonian only contains operators that transform as the identity representation of the point group. Except for the cubic groups, these operators are generally easy to determine; all group operators may be constructed from the following operators: (a) *n*-fold rotation about z, $R_z(2\pi/n)$; (b) coordination inversion, I; (c) 2-fold rotation about x, $R_r(\pi)$.

It can be easily shown that the C_{km} transform under these operations as follows

$$R_z(2\pi/n)C_{km} = \exp(-2\pi i m/n)C_{km} \tag{3}$$

$$IC_{km} = (-1)^k C_{km} \tag{4}$$

$$R_x(\pi)C_{km} = (-1)^k C_{k,-m}.$$
(5)

Further, since H_{CEF} , when acting between $4f^N$ states, connects two states of the same parity, odd-parity terms in H_{CEF} drop out, and from (3), k must be even. In addition, C_{km} is an irreducible tensor that connects single-electron states with 1 = 3; therefore, by the triangular inequalities, we must have $0 \le k \le 6$. These considerations are sufficient to determine which B_{km} are non-vanishing for all point groups.

In our crystal-field analysis, we assume a crystal-field Hamiltonian C_{2v} . It has been recognized that the crystal-field parameters, B_{km} , can all be chosen real for C_{2v} symmetry. The resulting Hamiltonian given by (1) results in nine independent parameters.

The crystal-field Hamiltonian is diagonalized together with an effective free-ion Hamiltonian of the form

$$H_{\text{free}} = \sum_{[S,L]J} \Delta_{[S,L]J} | [S,L]J \rangle \langle [S,L]J |$$
(6)

where the sum on [S, L]J, in general, runs over several of the lowest states of the $4f^N$ configuration. The quantities $\Delta_{[S,L]J}$ are centroid parameters, which would be equal to the excrperimental centres of gravity of the crystal-field split levels if effects of J mixing by the crystal-field were neglected. By diagonalizing the sume of (1) and (6), we include the major effect of J mixing. We include the lowest ten [S, L]J states in our calculations for Pr^{3+} and Tm^{3+} .

Matrix elements of the crystal-field Hamiltonian are obtained from wavefunctions associated with the intermediate-coupling diagonalization of a free-ion Hamiltonian consisting of Coulomb, spin-orbit and configuration interactions. Parameter values for this free-ion Hamiltonian are those appropriate for rare earth ions in aqueous solution [11]. The procedure used in these calculations has been described previously by Morrison *et al* [12].

The first step in our analysis of lanthanides ions in tetraphosphate crystals was to obtain starting values for B_{km} by means of point-charge lattice sums A_{km} . These are related to the B_{km} by

$$B_{km} = \rho_k A_{km} \tag{7}$$

where

$$\rho_k = \tau^{-k} \langle r^k \rangle_{\rm HF} (1 - \sigma_k) \tag{8}$$

and where τ is a host independent, ion-dependent radial expansion parameter, $\langle r^k \rangle_{\rm HF}$ are Hartree-Fock expansion values and σ_k are shielding factors. Crystal-field parameters for ${\rm Pr}^{3+}$ and ${\rm Tm}^{3+}$ were determined by starting with B_{km}

Crystal-field parameters for Pr^{3+} and Tm^{3+} were determined by starting with B_{km} given by (7) and varying the B_{km} and the $\Delta_{[S,L]J}$ simultaneously until a minimum RMS deviation between calculated and experimental energy levels was found. The best fit B_{km} are presented in table 1, together with the corresponding RMS devisions.

Values of the RMS deviations in table 1, ranging from 24 cm⁻¹ for Pr³⁺ to 15 cm⁻¹ (for Tm³⁺), are somewhat smaller than values obtained for the same ions in Y_2O_3 [13] (Y_2O_3 also has R³⁺ ions in C₂ symmetry).

Detailed comparisons of the calculated and experimental energy levels are given in tables 2 and 3. In these tables, states are identified by the maximum component in the free-ion wavefunctions. The theoetical energy elevels are calculated by means of the crystal-field parameters of table 1.

Table 1. Model crystal-field parameters B_{km} in cm⁻¹ for LiRP₄O₁₂ (point group $C_{2/v}$) R = Pr³⁺, Tm³⁺.

	Pr ³⁺	Tm ³⁺
	-780	-520
B ₂₂	115	80
B40	-140	-92
B42	-622	-350
B44	-320	-271
B ₆₀	256	180
B ₆₂	-20	-202
B ₆₄	138	235
B66	206	259
RMS	24 cm ⁻¹	15 cm ⁻¹

3.2. Pr^{3+} in $LiRP_4O_{12}$

The analysis of the Pr^{3+} spectrum (table 2) is complicated, our calculation spans 81 sublevels, and of these, 12 are not identified experimentally. The correlation between the levels originally deduced from experiment and those computed using the model parameters from table 1 was generally satisfactory.

In the ${}^{3}H_{5}$ state we did not determine six sublevels from experiment. The most interesting result of the model calculations for Pr^{3+} is that the ${}^{1}I_{6}$ state spans about 1000 cm⁻¹, whereas it had earlier been assumed that the group was confined to a much narrower energy range. Experimentally, the region from about 20 900 to 22 300 cm⁻¹ contains much weak unresolved structure, which is probably vibronic, three intensive bands attributed to components of ${}^{3}P_{1}$ and some relatively intensive bands 'associated' with this band. On the basis of the model calculation, most of the bands originally assigned as components of ${}^{1}I_{6}$ must actually be vibronic transitions whereas the ${}^{1}I_{6}$ transitions are extremely weak relative to the ${}^{3}P_{1}$ group.

3.3. Tm^{3+} in $LiLa_{1-x}Tm_xP_4O_{12}$

Transitions between the ground state and excited multiplet states in the $4f^{12}$ configuration of Tm^{3+} all occur in the range from about 5000 to 30000 cm⁻¹, except for those to ${}^{1}I_{6}$, ${}^{3}P_{0,1,2}$ and ${}^{1}S_{0}$, as indicated in table 3. Only the energies of the ${}^{1}I_{6}$, ${}^{3}P_{0,1,2}$ and ${}^{1}S_{0}$ states and the higher-lying crystal-field components of the ground state have not yet been established by experiment.

The RT luminescence spectrum of the LiLa_{0.99}Tm_{0.01}P₄O₁₂ single crystal is given in figure 1. The assignments of the band located at 780 nm are in some dispute (in terms of luminescence from the ¹G₄ level only), but we have determined them as ¹G₄-³H₅ and ³F₂-³H₆ transitions.

Examination of the model crystal-field for the ${}^{3}F_{4}$ state revealed good correlation with the observed transitions. The structure observed in the energy range of the ${}^{3}H_{5}$ group was complex but the model calculation provided the basis for a tentative interpretation; much of the observed structure had to be vibronic in origin. The complexity of the structure is typical of that observed in other R^{3+} -in-LiRP₄O₁₂ configurations. The broad band structure observed in the ${}^{3}H_{5}$ group is also observed in the ${}^{3}H_{4}$ group and similar considerations underlie the suggested interpretations in the two groups.

State		Energy (cm ⁻¹)		State	State	Energy (cm ⁻¹)	
[S, L]J	Label	Calculated	Experimental	[S,L]J	Label	Calculated	Experimental
³ H ₄	Z ₁	0	0	³ F ₃	V1	6522	6514
	\mathbb{Z}_2	71	62	-	V_2	6541	6523
	Z_3	90	100		\mathbf{v}_{1}	6574	6587
	Ž	158			V.	6648	6623
		301	_		v.	6675	6666
	7.	327			v.	6740	6722
	7-	147	-		¥6 17	6740	6747
	7.	490	_		*7	0750	0/4/
	7.	400					
	1.9	000		317		(012	6022
311	v	2160	2140	°r4	U1	0913	0944
-H5	I ₁	2160	2140		U ₂	7069	7085
	Y2	2235	2230		U_3	7170	7153
	Y ₃	2381	2398		U4	7188	7194
	Y4	2439	2450		U_5	7229	7215
	Y_5	2552	2530		U ₆	7241	7251
	Y ₆	2583			U7	7352	7336
	Y7	2622	<u> </u>		U_8	7368	7352
	Ύв	2688	<u> </u>		U ₉	7385	7390
	Y ₉	2701	_				
	Y10	2716	_	$^{1}D_{2}$	Bı	16989	16972
	Yii	2732		-•	B-	17022	17007
	-11				B,	17168	17177
3Не	x	4157	4158		R.	17281	17301
0	X ₂	4178	4203		Ъ. В.	17430	17417
	X.	4170	4280		122	17433	1,412
	лз У .	4275	4200	30.	C.	20.945	20.912
	Λ4 Υ-	4300	4047	10	C1	20043	20055
	л5 V	4401	4494	310	D	20.000	70.000
	Λ6 V	4382	4333	~r1	וט	20909	20 090
	Л 7 У	4630	4025		D_2	21 020	20 980
	X8 X	4700	4094		D_3	21 042	21015
	X9	4790	4/01	1-	_		
	X_{10}	4822	4830	- I6	E_1	21 278	21 303
	X_{11}	4854	4866		E_2	21 467	21 454
•	X_{12}	4891	4882		E3	21 540	21 537
	X13	4949	4926		E_4	21 567	21 588
					E5	21 633	21645
³ F ₂	W1	5093	5085		E ₆	21 650	21 682
	W_2	5108	5109		E7	21 771	21753
	W ₃	5177	5158		E ₈	21 802	21 801
	W.	5229	5211		Ee	21 905	21 929
	W5	5265	5256		Ein	21 985	22 002
					E11	22 034	22.055
					E12	22.111	22 129
					E ₁₃	22 267	22 286
				30	г	20.400	22.451
				⁹ P ₂	r _i	22400	224/1
					F2	22602	22 024
					F ₃	22 686	22701
					F4	22 789	22779
					F ₅	22 958	22970

8590 Z Mazurak

State		Energy (cm ⁻¹)		State		Energy (cm ⁻¹)	
[S, L]J	Label	Calculated	Experimental	[S, L]J	Label	Calculated	Experimental
³ H ₆	Z ₁	0	0	³ F ₃	V ₁	14 449	14460
	\mathbb{Z}_2	87	95		V2	14494	14501
	Z_3	99	105		V ₃	14522	14531
	Z4	155			V4	14538	14548
	Zs	234	-		V5	14587	14597
	Z6	280			V ₆	14603	14614
	Z_7	356	_		V 7	14651	14660
	Z 8	433	_				
	Zş	442		³ F ₂	Uı	15083	15100
	Z10	491		-	U_2	15146	15153
	Z11	530	_		U_3	15177	15189
	Z_{12}	569	_	-	U4	15228	15239
	Z ₁₃	598			U ₅	15262	15274
³ F ₄	\mathbf{Y}_1	5524	5540	¹ G₄	A	20933	20950
•	\mathbf{Y}_2	5601	5609	-	A ₂	21154	21160
	$\dot{Y_3}$	5680	5692		A ₃	21290	21 305
	Y4	5795	5810		A.	21 340	21355
	Y ₅	5832	5836		As	21382	21390
	Y ₆	5853	5866		As	21420	21 432
	Y7	5920	5935		A7	21 438	21449
	Ya	5976	5980		As	21 506	_
	Y ₉	6037	_		A ₉	21 559	21566
³ H5	\mathbf{X}_{1}	8166	8175	¹ D ₂	B1	27872	27880
•	\mathbf{X}_{2}	8254	8240	-	\mathbf{B}_2	27904	27915
	\mathbf{X}_{3}	83280	8298		B ₃	27998	28009
	X.	8293	8309		B4	28039	28050
	X ₅	8321	8330		Bs	28177	28185
	\mathbf{X}_{6}	8349	8363	•	Ū		
	X7	8356	8371	³ Po 1 2			_
	\mathbf{X}_{8}	8435	8403	0,1,2			
	X ₉	8442	8442	¹ Ie			
	X10	8469	8480	Ũ			
-	X_{11}	8583		¹ S ₀		-	-
³ H ₄	\mathbf{W}_{t}	12 475	12 490				
	W_2	12491	12 502				
	W ₃	12.552	12553				
	₩₄	12757	12770				
	W5	12.838	12852				
	W ₆	12,890	12 906				
	W ₂	12 906	12 920			-	
	w.	12933					
	W	12 979	_				

Table 3. Calculated and experimental energy levels for the $\rm Tm^{3+}$ in $\rm LiTmP_4O_{12},\,C_{2v}$ (C₂) sites: total of 53 experimental Stark levels.

ł

Figure 1. Room-temperature luminescence spectrum of Tm^{3+} ions in a LiLa_{0.99}Tm_{0.01}P₄O₁₂ crystal ($\lambda_{exc} = 462$ nm). The bands correspond to the ¹G₄-³F₄ and to the ¹G₄-³H₅, ³F₂-³H₆ transitions.

4. Conclusions

With this paper we have extended the analysis of Kramers and non-Kramers ions in the $C_{2/c}$ sites of LiRP₄O₁₂. This paper has reported, for the first time, optical absorption and luminescence spectra of Tm³⁺. These spectra and previously reported spectra of Pr³⁺ have been analysed with a crystal-field Hamiltonian of C_{2v} symmetry including J mixing effects.

Crystal-field aparameters in this Hamiltonian have been determined that minimize the RMS deviation between calculated and experimental energy levels. We conclude that the model calculations in the approximate C_{2v} symmetry for both Pr^{3+} and Tm^{3+} in LiRP₄O₁₂ provide the basis for a consistently good correlation with data. Both verifiable predictions and new insights into observed complex electronic-vibronic structure in several groups were evident.

References

- [1] Mazurak Z, Jeźowska-Trzebiatowska B and Maia-Melo S 1986 J. Mol. Struct. 143 195
- [2] Mazurak Z, Łukowiak E, Jeźowska-Trzebiatowska B, Schultze D and Waligora Ch 1984 J. Phys. Chem. Solids 45 487
- [3] Mazurak Z, Łukowiak E, Ciunik Z, Jeźowska-Trzebiatowska B, Schultze D and Waligora Ch 1984 J. Mol. Struct. 115 31
- [4] Mazurak Z, Hanuza J, Hermanowicz K, Jeźowska-Trzebiatowska B, Schultze D and Waligora Ch 1983 Chem. Phys. 79 255
- [5] Mazurak Z and Jeżowska-Trzebiatowska B 1981 Acta Phys. Pol. A 60 799
- [6] Mazurak Z, Jeźowska-Trzebiatowska B, Schultze D and Waligora Ch 1984 Cryst. Res. Technol. 19 7
- [7] Ryba-Romanowski W, Mazurak Z, Jeźowska-Trzebiatowska B, Schultze D and Waligora Ch 1980 Phys. Status Solidi a 62 75

8592 Z Mazurak

- [8] Mazurak Z, Łukowiak E, Jeżowska-Trzebiatowska B, Schultze D and Waligora Ch 1989 Mater. Sci. 15 33
- [9] Mazurak Z and Gruber J 1992 J. Phys.: Condens. Matter 4 3453
- [10] Morrison C A and Leavitt R P 1979 J. Chem. Phys. 71 2366
- [11] Carnall W T, Fields P R and Rajnak K 1988 J. Chem. Phys. 49 4412, 4424, 4443, 4447, 4450
- [12] Morrison C A, Leavitt R P and Wortman D E 1980 J. Chem. Phys. 73 2580
- [13] Leavitt R P, Gruber J B, Chang N C and Morrison C A 1982 J. Chem. Phys. 76 4775